Technological watch

Design and Experiment of Dry-Farming Cantaloupe Transplanter under Water

To solve the problems of high temperature and drought in the Xinjiang Turpan area and the low survival rate of melon seedlings transplanted into dry soil, existing transplanters for large plant type young melon seedlings can be mechanized. For non-destructive planting for small plant types, such as Hami melon seedlings, there are still poor transplanting effects, planting point precise pile-soil, and other problems. In this study, a water transplanter for laying pipe and film for Hami melons was designed to mechanize the operation of rotating tillage, laying film and covering soil, transplanting potted seedlings on film, and water injection of the seedling root and planting hole, and soil piling and suppression. In this study, a transplanter was designed by coupling the motion of an earth-covering roller and a duck’s mouth planter and realized the precise mound of soil in the planting hole, solved the difficult problem of the precise mound of soil on the membrane, and at the same time carried out water injection on the root of the melon seedlings, which effectively solved the problem of low survival rate of transplanted seedlings in the arid region of Turpan, Xinjiang, China. Field experiments showed that the survival rate of melon seedlings under drip irrigation for 8 h after transplanting into dry soil exceeded 97%. The efficiency of mechanized operation can reach 1 mu/person/hour, which is more than 8 times higher than manual operation. The operation speed of the machine is 1~1.2 m/s, and the qualified transplanting rate is 93.26%, which meets the requirements of cantaloupe transplanting agronomy. This study provides a new method for dry soil cantaloupe transplanting. This article can also provide a design reference for Hami melon transplanting mechanization in arid areas.

Publication date: 31/05/2022

Author: Dejiang Liu

Reference: doi: 10.3390/agriculture12060796



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 1914.